Lunar Mining & Landing Sites
This page hosts a growing list of tools related to lunar mining and landing sites. Contact me: cannon@mines.edu; 401-340-6608.
Ice Favorability Index
The Ice Favorability Index (IFI) maps below are based on a geologic system model for ice deposition and evolution (Cannon and Britt 2020, Icarus 347, 113778). The index maps are predictive, not based on surface ice detections, and highlight regions likely to host the most favorable ice deposits for mining. Desired characteristics include older ages, ice stability closer to the surface, and higher areal fraction of cold traps. These maps are agnostic in terms of mining architecture, and some areas may only be accessible with nuclear power for example.
GeoTIFF for north pole (80-90°)
GeoTIFF for south pole (80-90°)
References (Please cite if you use this data):
Cannon, K. M., and D. T. Britt (2020), A geologic model for lunar ice deposits at mining scales. Icarus 347, 113778.
Click to view full size.


Polar Terrain Type Maps
In Cannon and Britt (2020) we divided the polar terrains into 9 different Terrain Types based on a simple adaptation of Matt Siegler's ice stability depth maps (Siegler et al. 2016). These have implications for mining strategies and methods, as well as landing site selection. The divisions are:
TT1: Ice stable at the upper surface (macro cold traps)
TT2: Ice stable at <1 m depth (micro cold traps at surface)
TT3: Ice stable at >1 m depth (micro cold traps at surface)
Based on the episode of true polar wander proposed by Siegler et al. (2016), there are 9 permutations for terrains both before and after this event, assuming a terrain is old enough that it pre-dates polar wander. These permutations are designated like TT2→3 for a terrain that changed from TT2 to TT3. The permutation maps are available below:
GeoTIFF for north pole (80-90°)
GeoTIFF for south pole (80-90°)
References (Please cite if you use this data):
Cannon, K. M., and D. T. Britt (2020), A geologic model for lunar ice deposits at mining scales. Icarus 347, 113778.
Siegler, M. A. et al. (2016), Lunar true polar wander inferred from polar hydrogen. Nature 531, 480-484.
Click to view full size.


Data values: 1 = TT3→3 (dark blue); 2 = TT3→2 (green); 3 = TT3→1 (dark gray); 4 = TT2→3 (teal); 5 = TT2→2 (blue); 6 = TT2→1 (light gray); 7 = TT1→3 (pink); 8 = TT1→2 (purple); 9 = TT1→1 (white)
Cold Trap Accessibility
In Cannon and Britt (2020), we calculated the accessibility of large permanent cold traps at the lunar poles for wheeled vehicles. Accessibility metrics included minimum energy paths, minimum distance paths, and lowest maximum slope paths for entry, egress and round trips between a target location within the cold trap, and illuminated, low-slope staging areas outside the cold trap. 55 of the 59 cold traps studied were found to be accessible with <25° slopes. Smaller cold traps are generally more accessible, but several of the huge south pole cold traps have very low-energy entry paths.
References (Please cite if you use this data):
Cannon, K. M., and D. T. Britt, Accessibility dataset for large permanent cold traps at the lunar poles, Earth and Space Science, 10, e2020EA001291.
Click to view full size.


ArcGIS shapefiles are available for the cold traps in the study, with attribute fields for all the accessibility metrics:
Download shapefiles (.zip; 60 KB)
Accessibility metrics for north polar cold traps. Distance and slope metrics are given for round trip routes. Italicized entries have no paths with a maximum slope <25°.Click cold trap ID for summary images
Cold trap ID | Min. energy down (joules) | Min. energy up | Min. energy round-trip | Dist. (km) | Max. slope (°) | Best dist. | Best max slope | Score |
---|---|---|---|---|---|---|---|---|
NP_UN04 | 3.40E+05 | 1.20E+06 | 1.60E+06 | 15 | 22 | 15 | 17 | 397 |
NP_UN05 | 7.70E+05 | 1.10E+06 | 1.80E+06 | 16.8 | 13 | 16.8 | 13 | 392 |
NP_UN01 | 4.80E+05 | 1.10E+06 | 1.60E+06 | 17 | 19 | 17 | 17 | 355 |
NP_UN02 | 4.60E+05 | 9.80E+05 | 1.40E+06 | 14.4 | 19 | 14.4 | 19 | 354 |
NP_UN03 | 6.40E+05 | 1.10E+06 | 1.80E+06 | 18.4 | 22 | 18 | 16 | 343 |
NP_HEVE | 5.00E+05 | 1.60E+06 | 2.20E+06 | 21 | 22 | 21 | 15 | 332 |
NP_UN07 | 4.30E+05 | 1.40E+06 | 1.90E+06 | 18.2 | 24 | 18.2 | 19 | 299 |
NP_FIBI | 5.80E+05 | 1.20E+06 | 1.90E+06 | 19.1 | 24 | 19.1 | 18 | 284 |
NP_UN06 | 5.10E+05 | 1.20E+06 | 1.80E+06 | 16.9 | 22 | 16.9 | 22 | 275 |
NP_UN08 | 9.30E+05 | 1.50E+06 | 2.60E+06 | 24.6 | 16 | 24.2 | 16 | 267 |
NP_ROZW | 7.20E+05 | 2.00E+06 | 2.70E+06 | 26.8 | 20 | 26.8 | 13 | 266 |
NP_NANF | 5.50E+05 | 1.70E+06 | 2.20E+06 | 21 | 20 | 21 | 20 | 249 |
NP_HERM | 6.30E+05 | 2.00E+06 | 2.60E+06 | 27 | 19 | 27 | 16 | 236 |
NP_ROZH | 4.80E+05 | 2.00E+06 | 2.40E+06 | 24 | 25 | 24 | 19 | 233 |
NP_LENA | 7.30E+05 | 2.30E+06 | 3.20E+06 | 32.8 | 21 | 32.8 | 13 | 216 |
NP_NANA | 7.30E+05 | 2.30E+06 | 3.00E+06 | 30 | 23 | 30 | 18 | 170 |
NP_ROZU | 5.50E+05 | 2.20E+06 | 2.80E+06 | 27.3 | 25 | 27.3 | 20 | 159 |
NP_HERA | 24.1 | 34 | 100 | |||||
NP_LOVE | 6.80E+05 | 3.10E+06 | 3.80E+06 | 36.4 | 25 | 36.4 | 23 | 86 |
NP_SYLV | 1.00E+06 | 3.20E+06 | 4.20E+06 | 40.7 | 24 | 40.7 | 22 | 69 |
Accessibility metrics for south polar cold traps. Distance and slope metrics are given for round trip routes. Italicized entries have no paths with a maximum slope <25°.Click cold trap ID for summary images
Cold trap ID | Min. energy down (joules) | Min. energy up | Min. energy round-trip | Dist. (km) | Max. slope (°) | Best dist. | Best max slope | Score |
---|---|---|---|---|---|---|---|---|
SP_UN14 | 2.4E+05 | 8.6E+05 | 1.2E+06 | 11.2 | 18 | 11.2 | 12 | 496 |
SP_UN18 | 2.8E+05 | 7.7E+05 | 1.0E+06 | 9.9 | 18 | 9.9 | 14 | 486 |
SP_UN03 | 3.8E+05 | 1.1E+06 | 1.5E+06 | 14.3 | 16 | 14.3 | 13 | 457 |
SP_UN17 | 1.7E+05 | 8.4E+05 | 1.0E+06 | 9.6 | 18 | 9.6 | 17 | 453 |
SP_UN16 | 4.2E+05 | 1.0E+06 | 1.4E+06 | 14.6 | 21 | 14.6 | 13 | 446 |
SP_UN19 | 1.7E+05 | 8.6E+05 | 1.0E+06 | 9.6 | 23 | 9.6 | 18 | 440 |
SP_SLAT | 2.0E+05 | 9.0E+05 | 1.1E+06 | 11.4 | 23 | 11.4 | 18 | 417 |
SP_UN20 | 4.2E+05 | 9.7E+05 | 1.8E+06 | 16.7 | 15 | 16.7 | 15 | 407 |
SP_UN10 | 3.5E+05 | 1.1E+06 | 1.5E+06 | 14.4 | 18 | 14.4 | 17 | 403 |
SP_UN04 | 4.4E+05 | 1.4E+06 | 1.8E+06 | 17.8 | 19 | 17.8 | 14 | 390 |
SP_UN07 | 6.1E+05 | 1.1E+06 | 1.7E+06 | 15.9 | 21 | 15.9 | 15 | 389 |
SP_UN15 | 2.8E+05 | 1.4E+06 | 1.6E+06 | 15.8 | 23 | 15.8 | 17 | 381 |
SP_WIEC | 4.4E+05 | 1.6E+06 | 2.1E+06 | 19.3 | 23 | 19.3 | 12 | 380 |
SP_NEFE | 3.7E+05 | 1.7E+06 | 2.0E+06 | 19.2 | 24 | 19.2 | 15 | 350 |
SP_UN09 | 4.6E+05 | 1.3E+06 | 1.8E+06 | 18.2 | 22 | 18.2 | 16 | 345 |
SP_UN02 | 6.7E+05 | 1.6E+06 | 2.3E+06 | 21.9 | 16 | 21.9 | 14 | 327 |
SP_WIJ2 | 4.1E+05 | 1.0E+06 | 1.4E+06 | 14.4 | 24 | 14.4 | 23 | 322 |
SP_UN01 | 4.4E+05 | 1.4E+06 | 2.3E+06 | 23.5 | 23 | 22.5 | 16 | 306 |
SP_UN21 | 3.2E+05 | 1.7E+06 | 2.1E+06 | 20.9 | 22 | 20.9 | 19 | 277 |
SP_NOBI | 7.2E+05 | 2.0E+06 | 2.7E+06 | 26.2 | 21 | 26.2 | 16 | 249 |
SP_SCOT | 4.5E+05 | 2.0E+06 | 2.4E+06 | 23.0 | 23 | 23.0 | 20 | 232 |
SP_UN11 | 4.6E+05 | 2.0E+06 | 2.5E+06 | 24.2 | 23 | 24.2 | 19 | 210 |
SP_FAUS | 3.7E+05 | 2.1E+06 | 2.5E+06 | 25.2 | 23 | 25.2 | 22 | 204 |
SP_UN05 | 8.7E+05 | 2.2E+06 | 3.2E+06 | 30.4 | 25 | 30.4 | 16 | 198 |
SP_SHOE | 3.3E+05 | 2.2E+06 | 2.5E+06 | 26.6 | 23 | 25.9 | 22 | 193 |
SP_CABB | 4.3E+05 | 1.8E+06 | 2.7E+06 | 28.4 | 22 | 28.4 | 21 | 187 |
SP_WIJ1 | 3.7E+05 | 2.2E+06 | 2.5E+06 | 24.5 | 25 | 24.5 | 24 | 177 |
SP_SVER | 6.8E+05 | 2.3E+06 | 3.1E+06 | 30.8 | 18 | 30.8 | 18 | 160 |
SP_UN06 | 4.5E+05 | 1.9E+06 | 3.6E+06 | 36.3 | 24 | 36.3 | 21 | 134 |
SP_UN12 | 1.3E+06 | 3.0E+06 | 4.3E+06 | 42.3 | 18 | 42.1 | 18 | 128 |
SP_DEGE | 7.8E+05 | 2.2E+06 | 3.0E+06 | 28.8 | 25 | 28.8 | 22 | 118 |
SP_AMUN | 1.2E+06 | 3.0E+06 | 4.2E+06 | 40.9 | 20 | 40.9 | 19 | 106 |
SP_CAB1 | 7.4E+05 | 3.1E+06 | 3.9E+06 | 38.2 | 20 | 38.2 | 20 | 104 |
SP_HAWO | 7.3E+05 | 2.4E+06 | 3.2E+06 | 31.0 | 24 | 31.0 | 23 | 90 |
SP_IDLL | 35.3 | 30 | 55 | |||||
SP_CAB2 | 2.2E+06 | 3.8E+06 | 6.0E+06 | 61.4 | 22 | 61.4 | 22 | 50 |
SP_SHAC | 40.9 | 35 | 41 | |||||
SP_UN13 | 1.3E+06 | 4.3E+06 | 5.7E+06 | 55.0 | 25 | 55.0 | 25 | 27 |
SP_UN08 | 54.3 | 33 | 23 |
Physical Textures of Lunar Ice
In a work in preparation, I'm looking at the potential physical textures of ice and regolith in lunar cold trap environments. The diagram below is free to use.
