Lunar Mining & Landing Sites

by Kevin M. Cannon

1. Ice Favorability Index Maps
2. Polar Terrain Type Maps
3. Cold Trap Accessibility
4. Physical Textures of Lunar Ice

Lunar Mining & Landing Sites

This page hosts a growing list of tools related to lunar mining and landing sites. Contact me: cannon@mines.edu; 401-340-6608.

Ice Favorability Index

The Ice Favorability Index (IFI) maps below are based on a geologic system model for ice deposition and evolution (Cannon and Britt 2020, Icarus 347, 113778). The index maps are predictive, not based on surface ice detections, and highlight regions likely to host the most favorable ice deposits for mining. Desired characteristics include older ages, ice stability closer to the surface, and higher areal fraction of cold traps. These maps are agnostic in terms of mining architecture, and some areas may only be accessible with nuclear power for example.

GeoTIFF for north pole (80-90°)

GeoTIFF for south pole (80-90°)

References (Please cite if you use this data):
Cannon, K. M., and D. T. Britt (2020), A geologic model for lunar ice deposits at mining scales. Icarus 347, 113778.


Click to view full size.




Polar Terrain Type Maps

In Cannon and Britt (2020) we divided the polar terrains into 9 different Terrain Types based on a simple adaptation of Matt Siegler's ice stability depth maps (Siegler et al. 2016). These have implications for mining strategies and methods, as well as landing site selection. The divisions are:

TT1: Ice stable at the upper surface (macro cold traps)
TT2: Ice stable at <1 m depth (micro cold traps at surface)
TT3: Ice stable at >1 m depth (micro cold traps at surface)

Based on the episode of true polar wander proposed by Siegler et al. (2016), there are 9 permutations for terrains both before and after this event, assuming a terrain is old enough that it pre-dates polar wander. These permutations are designated like TT2→3 for a terrain that changed from TT2 to TT3. The permutation maps are available below:

GeoTIFF for north pole (80-90°)

GeoTIFF for south pole (80-90°)

References (Please cite if you use this data):
Cannon, K. M., and D. T. Britt (2020), A geologic model for lunar ice deposits at mining scales. Icarus 347, 113778.
Siegler, M. A. et al. (2016), Lunar true polar wander inferred from polar hydrogen. Nature 531, 480-484.


Click to view full size.

Data values: 1 = TT3→3 (dark blue); 2 = TT3→2 (green); 3 = TT3→1 (dark gray); 4 = TT2→3 (teal); 5 = TT2→2 (blue); 6 = TT2→1 (light gray); 7 = TT1→3 (pink); 8 = TT1→2 (purple); 9 = TT1→1 (white)




Cold Trap Accessibility

In Cannon and Britt (2020), we calculated the accessibility of large permanent cold traps at the lunar poles for wheeled vehicles. Accessibility metrics included minimum energy paths, minimum distance paths, and lowest maximum slope paths for entry, egress and round trips between a target location within the cold trap, and illuminated, low-slope staging areas outside the cold trap. 55 of the 59 cold traps studied were found to be accessible with <25° slopes. Smaller cold traps are generally more accessible, but several of the huge south pole cold traps have very low-energy entry paths.

References (Please cite if you use this data):
Cannon, K. M., and D. T. Britt, Accessibility dataset for large permanent cold traps at the lunar poles, Earth and Space Science, 10, e2020EA001291.

Click to view full size.

ArcGIS shapefiles are available for the cold traps in the study, with attribute fields for all the accessibility metrics:

Download shapefiles (.zip; 60 KB)


Accessibility metrics for north polar cold traps. Distance and slope metrics are given for round trip routes. Italicized entries have no paths with a maximum slope <25°.Click cold trap ID for summary images


Cold trap ID Min. energy down (joules) Min. energy up Min. energy round-trip Dist. (km) Max. slope (°) Best dist. Best max slope Score
NP_UN04 3.40E+05 1.20E+06 1.60E+06 15 22 15 17 397
NP_UN05 7.70E+05 1.10E+06 1.80E+06 16.8 13 16.8 13 392
NP_UN01 4.80E+05 1.10E+06 1.60E+06 17 19 17 17 355
NP_UN02 4.60E+05 9.80E+05 1.40E+06 14.4 19 14.4 19 354
NP_UN03 6.40E+05 1.10E+06 1.80E+06 18.4 22 18 16 343
NP_HEVE 5.00E+05 1.60E+06 2.20E+06 21 22 21 15 332
NP_UN07 4.30E+05 1.40E+06 1.90E+06 18.2 24 18.2 19 299
NP_FIBI 5.80E+05 1.20E+06 1.90E+06 19.1 24 19.1 18 284
NP_UN06 5.10E+05 1.20E+06 1.80E+06 16.9 22 16.9 22 275
NP_UN08 9.30E+05 1.50E+06 2.60E+06 24.6 16 24.2 16 267
NP_ROZW 7.20E+05 2.00E+06 2.70E+06 26.8 20 26.8 13 266
NP_NANF 5.50E+05 1.70E+06 2.20E+06 21 20 21 20 249
NP_HERM 6.30E+05 2.00E+06 2.60E+06 27 19 27 16 236
NP_ROZH 4.80E+05 2.00E+06 2.40E+06 24 25 24 19 233
NP_LENA 7.30E+05 2.30E+06 3.20E+06 32.8 21 32.8 13 216
NP_NANA 7.30E+05 2.30E+06 3.00E+06 30 23 30 18 170
NP_ROZU 5.50E+05 2.20E+06 2.80E+06 27.3 25 27.3 20 159
NP_HERA 24.1 34 100
NP_LOVE 6.80E+05 3.10E+06 3.80E+06 36.4 25 36.4 23 86
NP_SYLV 1.00E+06 3.20E+06 4.20E+06 40.7 24 40.7 22 69

Accessibility metrics for south polar cold traps. Distance and slope metrics are given for round trip routes. Italicized entries have no paths with a maximum slope <25°.Click cold trap ID for summary images


Cold trap ID Min. energy down (joules) Min. energy up Min. energy round-trip Dist. (km) Max. slope (°) Best dist. Best max slope Score
SP_UN14 2.4E+05 8.6E+05 1.2E+06 11.2 18 11.2 12 496
SP_UN18 2.8E+05 7.7E+05 1.0E+06 9.9 18 9.9 14 486
SP_UN03 3.8E+05 1.1E+06 1.5E+06 14.3 16 14.3 13 457
SP_UN17 1.7E+05 8.4E+05 1.0E+06 9.6 18 9.6 17 453
SP_UN16 4.2E+05 1.0E+06 1.4E+06 14.6 21 14.6 13 446
SP_UN19 1.7E+05 8.6E+05 1.0E+06 9.6 23 9.6 18 440
SP_SLAT 2.0E+05 9.0E+05 1.1E+06 11.4 23 11.4 18 417
SP_UN20 4.2E+05 9.7E+05 1.8E+06 16.7 15 16.7 15 407
SP_UN10 3.5E+05 1.1E+06 1.5E+06 14.4 18 14.4 17 403
SP_UN04 4.4E+05 1.4E+06 1.8E+06 17.8 19 17.8 14 390
SP_UN07 6.1E+05 1.1E+06 1.7E+06 15.9 21 15.9 15 389
SP_UN15 2.8E+05 1.4E+06 1.6E+06 15.8 23 15.8 17 381
SP_WIEC 4.4E+05 1.6E+06 2.1E+06 19.3 23 19.3 12 380
SP_NEFE 3.7E+05 1.7E+06 2.0E+06 19.2 24 19.2 15 350
SP_UN09 4.6E+05 1.3E+06 1.8E+06 18.2 22 18.2 16 345
SP_UN02 6.7E+05 1.6E+06 2.3E+06 21.9 16 21.9 14 327
SP_WIJ2 4.1E+05 1.0E+06 1.4E+06 14.4 24 14.4 23 322
SP_UN01 4.4E+05 1.4E+06 2.3E+06 23.5 23 22.5 16 306
SP_UN21 3.2E+05 1.7E+06 2.1E+06 20.9 22 20.9 19 277
SP_NOBI 7.2E+05 2.0E+06 2.7E+06 26.2 21 26.2 16 249
SP_SCOT 4.5E+05 2.0E+06 2.4E+06 23.0 23 23.0 20 232
SP_UN11 4.6E+05 2.0E+06 2.5E+06 24.2 23 24.2 19 210
SP_FAUS 3.7E+05 2.1E+06 2.5E+06 25.2 23 25.2 22 204
SP_UN05 8.7E+05 2.2E+06 3.2E+06 30.4 25 30.4 16 198
SP_SHOE 3.3E+05 2.2E+06 2.5E+06 26.6 23 25.9 22 193
SP_CABB 4.3E+05 1.8E+06 2.7E+06 28.4 22 28.4 21 187
SP_WIJ1 3.7E+05 2.2E+06 2.5E+06 24.5 25 24.5 24 177
SP_SVER 6.8E+05 2.3E+06 3.1E+06 30.8 18 30.8 18 160
SP_UN06 4.5E+05 1.9E+06 3.6E+06 36.3 24 36.3 21 134
SP_UN12 1.3E+06 3.0E+06 4.3E+06 42.3 18 42.1 18 128
SP_DEGE 7.8E+05 2.2E+06 3.0E+06 28.8 25 28.8 22 118
SP_AMUN 1.2E+06 3.0E+06 4.2E+06 40.9 20 40.9 19 106
SP_CAB1 7.4E+05 3.1E+06 3.9E+06 38.2 20 38.2 20 104
SP_HAWO 7.3E+05 2.4E+06 3.2E+06 31.0 24 31.0 23 90
SP_IDLL 35.3 30 55
SP_CAB2 2.2E+06 3.8E+06 6.0E+06 61.4 22 61.4 22 50
SP_SHAC 40.9 35 41
SP_UN13 1.3E+06 4.3E+06 5.7E+06 55.0 25 55.0 25 27
SP_UN08 54.3 33 23



Physical Textures of Lunar Ice

In a work in preparation, I'm looking at the potential physical textures of ice and regolith in lunar cold trap environments. The diagram below is free to use.